
SMAP soil moisture drying more rapid than observed
in situ following rainfall events
Peter J. Shellito1, Eric E. Small1, Andreas Colliander2, Rajat Bindlish3, Michael H. Cosh3, Aaron A. Berg4,
David D. Bosch5, Todd G. Caldwell6, David C. Goodrich7, Heather McNairn8, John H. Prueger9,
Patrick J. Starks10, Rogier van der Velde11, and Jeffrey P. Walker12

1Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA, 2NASA Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, California, USA, 3USDA-ARS Hydrology and Remote Sensing
Laboratory, Beltsville, Maryland, USA, 4Department of Geography, University of Guelph, Guelph, Ontario, Canada,
5USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia, USA, 6Bureau of Economic Geology, Jackson School
of Geosciences, University of Texas at Austin, Austin, Texas, USA, 7USDA-ARS Southwest Watershed Research Center,
Tucson, Arizona, USA, 8Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada, 9USDA-ARS National Laboratory for
Agriculture and the Environment, Ames, Iowa, USA, 10USDA-ARS Grazinglands Research Laboratory, El Reno, Oklahoma,
USA, 11Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands,
12Department of Civil Engineering, Monash University, Clayton, Melbourne, Victoria, Australia

Abstract We examine soil drying rates by comparing surface soil moisture observations from the NASA
Soil Moisture Active Passive (SMAP) mission to those from networks of in situ probes upscaled to SMAP’s
sensing footprint. SMAP and upscaled in situ probes record different soil drying dynamics after rainfall. We
modeled this process by fitting an exponential curve to 63 drydown events: the median SMAP drying
timescale is 44% shorter and the magnitude of drying is 35% greater than in situ measurements. We also
calculated drying rates between consecutive observations from 193 events. For 6 days after rainfall, soil
moisture from SMAP dries at twice the rate of in situ measurements. Restricting in situ observations to times
of SMAP observations does not change the drying timescale, magnitude, or rate. Therefore, observed
differences are likely due to differences in sensing depths: SMAPmeasures shallower soil moisture than in situ
probes, especially after rainfall.

1. Introduction

Surface soil moisture exerts an important control on the fluxes of water and energy between the land surface
and atmosphere [Eltahir, 1998; Gallego-Elvira et al., 2016]. It drives land-atmosphere coupling, affecting atmo-
spheric circulation, and regional weather [Koster et al., 2004; Guo et al., 2006;Dirmeyer et al., 2013]. Given these
effects, improvements in land surface modeling have been shown to enhance both short-term and seasonal
climate forecasting [Guo et al., 2011; Yang et al., 2011]. Persistence of root zone soil moisture anomalies yields
memory in the climate system on scales up to months [Koster et al., 2006; Ghannam et al., 2016]. Although
surface soil moisture varies more rapidly due to the direct effects of precipitation and evaporation [e.g.,
Kurc and Small, 2004], propagation of anomalies from the surface layer influences dynamics throughout
the soil profile and below [Eltahir and Yeh, 1999]. Observations of soil drying at the surface can therefore
inform on deeper, more persistent anomalies that define the onset of drought [Serafini and Sud, 1987; Ford
et al., 2015], affect ecosystem dynamics [D’Odorico et al., 2000; Rodriguez-Iturbe, 2000; Daly and Porporato,
2005], and control soil carbon and nitrogen cycles [Porporato et al., 2003; Ivanov et al., 2008].

Remote sensingmissions such as Soil Moisture Active Passive (SMAP) and Soil Moisture Ocean Salinity (SMOS)
have coarse spatial resolution and only pass over a particular location periodically [Njoku et al., 2003; Kerr et al.,
2010; Entekhabi et al., 2014]. However, the global coverage of space-borne sensors makes their data optimal
for assimilation, allowing for better estimation of root zone soil moisture and hydrometeorologic fluxes [e.g.,
Martens et al., 2016]. To improve this process, efforts must be taken to characterize satellite retrievals.

The science requirement for SMAP (and SMOS) is to provide estimates of soil moisture in the top 5 cm of soil
with an unbiased root mean squared error (ubRMSE) no greater than 0.04 cm3 cm!3 [Kerr et al., 2010;
Entekhabi et al., 2014]. For SMAP validation, in situ soil moisture monitoring sites were developed and
charged with providing an estimate of soil moisture over this same depth interval, at a spatial scale commen-
surate with the SMAP sensing footprint [Entekhabi et al., 2014]. For practical reasons, in situ probes in these
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networks are typically placed at 5 cm depth, which means they measure soil moisture content between 3.5
and 6.5 cm [Rondinelli et al., 2015]. In contrast, L-band radiometers such as that on SMAP measure soil moist-
ure between the surface and a depth that varies. Though nominally 5 cm, penetration depth can be much
shallower when soil water content is high [Njoku and Kong, 1977; Escorihuela et al., 2010; Jackson et al.,
2012]. In addition, SMAP’s soil moisture retrieval algorithm is strictly valid only for uniform soil moisture
profiles [Jackson et al., 2016], which may not exist immediately following rainfall.

Notwithstanding this imperfect representation of the passive L-band sensing depth, monitoring sites with
probes inserted at 5 cm depth have been and continue to be a primary means of validating satellite-based
soil moisture estimates [Jackson et al., 2010, 2012; Entekhabi et al., 2014]. Chan et al. [2016] used 13 such sites,
referred to as core validation sites (CVS) [Jackson et al., 2016], to demonstrate that initial SMAP soil moisture
retrievals yield an ubRMSE of 0.038 cm3 cm!3, thus meeting the mission target. Despite this success, it was
qualitatively noted that SMAP soil moisture dries more rapidly than observed in situ [Chan et al., 2016], per-
haps due to differences in sensing depth between the satellite and in situ observations [Jackson et al., 2016].

Two previous studies demonstrated that SMOS soil moisture also decreases more quickly following rainfall
than observed in situ. Champagne et al. [2016] analyzed data from four sites in Canada (including the two
used here) and showed that although SMOS captured drying trends, SMOS soil moisture was often higher
than the in situ observations soon after rainfall events. Rondinelli et al. [2015], using data from South Fork,
Iowa, showed that surface drying rates from SMOS were faster than rates calculated from in situ observations.
They used an unsaturated soil water flowmodel to demonstrate that differences in observation depths could
explain the observed differences in drying rates.

This paper contributes to SMAP validation by comparing retrieved soil moisture with in situ observations
during soil drying (drydown) events. Data from 193 distinct events across 17 sites with distributed networks
of soil moisture probes were used for this analysis. SMAP and in situ soil moisture are both used to calculate
(1) exponential timescales of soil drying [e.g., Kurc and Small, 2004; Rondinelli et al., 2015] and (2) discrete
drying rates as a function of time since last rainfall. Calculations are independent of bias and answer a more
specific question than ubRMSE can: What differences exist between how SMAP and in situ probes character-
ize drying of the land surface after a rain event? Analyses include in situ data at both its native high frequency
and at the SMAP observation frequency, allowing us to assess if critical information about drying is lost due to
the timing and frequency of SMAP observations. Quantifying the accuracy of SMAP drying rates is necessary
for informed use of SMAP soil moisture observations.

2. Materials and Methods
2.1. Data
2.1.1. SMAP Observations
The SMAP satellite was launched on 31 January 2015. SMAP overpasses are every 1 to 3 days, with the repeat
interval depending on latitude. SMAP’s radiometer operates in the L band of the microwave spectrum
(1.41GHz) [Entekhabi et al., 2014]. The SMAP radiometer soil moisture team has developed five soil moisture
retrieval algorithms to generate level 2 passive soil moisture estimates (L2SMP). This study used the baseline
soil moisture algorithm: single channel algorithm using vertical polarization observations (SCAV) [Chan et al.,
2016]. All SMAP data shown here were processed using a 36 km grid centered on each CVS (described below)
and thus differs from the publically available data on the EASE-Grid. We used level 2 descending half-orbit
(~6 A.M. local time) observations from 31 March 2015 to 1 March 2016 (data version 3). Data flagged due
to frozen conditions, snow, dense vegetation, and precipitation were excluded from the analysis.
2.1.2. In Situ Observations
The SMAP validation program collaborates with CVS situated around the world. These locations constitute an
extensive network of densely instrumented soil monitoring sites, allowing rigorous and continual evaluation
of SMAP retrievals. Analyses use upscaled data from 17 CVS (Table S1), not individual probe values. Upscaling
is based on a geometrically weighted average of probes within the pixel [Colliander et al., 2015] that qualifies
them for use at the 36 km scale [Jackson et al., 2016]. At all sites, probes were inserted horizontally at 5 cm
depth, except Yanco and Kyeamba, Australia, where most probes were inserted vertically (0 to 5.8 cm).

In situ data have a sampling frequency of 60min or less. These data, referred to in our analyses below as
inSituall, are assumed to represent the “true” soil moisture drying dynamics at each CVS. Land surface
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heterogeneities are averaged out by the upscaling calculation at each site. Network accuracies where quan-
tified are 0.02 cm3 cm!3 or better [Cosh et al., 2004, 2006, 2008; Bosch et al., 2006]. Probe random errors aver-
age 0.01 cm3 cm!3 [Coopersmith et al., 2016], and probe precision is better than 0.01 cm3 cm!3 [Seyfried et al.,
2005]. All analyses were also completed using a subset of in situ observations that correspond in time with
SMAP retrievals. This subset of data is referred to as inSituSMAP (Figure S1 in the supporting information).
Temporal resampling isolates the effects of SMAP observation frequency (inSituall versus inSituSMAP) from
overall differences (inSituall versus SMAP).
2.1.3. Precipitation Products
Precipitation networks are not available at every CVS. In order to ensure a homogenous analysis (gauges,
where present, do not have uniformity in number or density), we used Land Data Assimilation System
(LDAS) products at all sites. North American LDAS (NLDAS-2) precipitation [Xia et al., 2012] covers North
American locations, and Global LDAS (GLDAS-1) covers all others [Rodell and Beaudoing, 2007]. Analyses
employed the one-eighth degree NLDAS-2 or the one-fourth degree GLDAS-1 cell that is most closely aligned
with each CVS. The use of such large-scale precipitation products prohibits investigation into possible effects
of nonuniform rainfall. In addition, because these products have errors and scale discrepancies, they provided
only initial guidance in selecting rain-free intervals. The drydowns were further evaluated and adjusted
as follows.

2.2. Selection of Drydown Events

We selected discrete drydown intervals using a two-step process. First, we used LDAS precipitation to auto-
matically identify dry periods that follow rainfall events. The start of such a drydown is designated after 5mm
(or more) of rain has accumulated in the preceding 24 h. The drydown ends once more than 2mm of subse-
quent precipitation accumulates. We only consider drydowns that are at least 4 days long. Second, we manu-
ally adjusted the drydown start time to within an hour after the observed maximum in situ soil moisture and
adjusted the end time to just prior to any increase in soil moisture due to new rainfall. In addition, we
excluded events that had obvious errors (sensors dropping in or out), contained fewer than two concurrent
SMAP and in situ observations, or demonstrated no response of soil moisture to the rainfall or drydown. The
selection process therefore avoided relying exclusively on LDAS products, so using different precipitation
data would have minimal impacts on the results.

Using these criteria, 193 drydown events were identified, totaling 2005 days across the 17 CVS (Table S1 and
Figures S2–S18). All analyses are limited to observations from these drydown periods, which include 959
SMAP observations and constitute 40% of the snow-free record.

2.3. Analysis Methods

Two methods were used to analyze and compare SMAP observations with in situ observations: (1) fitting of
an exponential model to assess the timescale and magnitude of drying and (2) calculation of discrete drying
rates between successive observations. Both of these methods provide information in an unbiased frame-
work, so adjusting SMAP time series for bias is unnecessary.
2.3.1. Exponential Model
We modeled the in situ and SMAP observations from individual drydowns as exponential decay functions
[Kurc and Small, 2004; Rondinelli et al., 2015]:

θ tð Þ ¼ A%e ! t
τ

! "
þ θf ; (1)

where θ is surface soil moisture content (cm3 cm!3), t is time since the beginning of the drydown (days), and
A, τ, and θf are empirically determined fitting parameters indicating, respectively, themagnitude of soil moist-
ure drying (cm3 cm!3), the exponential time constant (days), and a final soil moisture content (cm3 cm!3;
Figure S1). Modeled θ approaches but never reaches θf. We therefore constrain θf below the lowest soil moist-
ure observed during the drydown and at or above the site’s lowest (residual) soil moisture.

For each event, model parameters (τ, A, and θf) were selected to minimize the sum of squared errors between
modeled soil moisture and (1) inSituall, (2) inSituSMAP, and (3) SMAP observations. Parameter selection used a
subspace trust-region algorithm, based on the interior-reflective Newton method [Coleman and Li,
1994, 1996].
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When fitting equation (1) to the three observation types, confidence intervals at the 68% level were
determined, corresponding to one standard deviation. An “acceptable” fit is considered to be one in which
the confidence interval around τ does not include zero. Using this criterion, 188 of the 193 models fit to
inSituall drydowns were found to be acceptable. Such success indicates that the exponential model provides
a reasonable characterization of soil moisture. In contrast, only 88 and 74 models fit to inSituSMAP and SMAP
(respectively) were acceptable. This does not indicate that the exponential model is inappropriate for these
data but that the lower SMAP observation frequency increases parameter uncertainty. After screening out
low-quality fits, there were 63 drydowns that had acceptable model fits to all three observation types.
Exponential model results are limited to this subset of drydowns. Widening or narrowing the confidence
interval does not significantly alter the results of this study.
2.3.2. Soil Drying Rates
We calculated rates of soil drying (dθ/dt) using finite differences within drydown periods:

dθ
dt

¼ θnþ1 ! θn
tnþ1 ! tn

; (2)

where n and n+ 1 correspond to consecutive observations. This analysis required only two or more soil moist-
ure observations within each drydown interval. Thus, unlike the exponential analysis, all 193 drydowns were
included. For comparison against SMAP, we use daily in situ data (inSitudaily), starting 12 h after the drydown
commences. This removes the diurnal fluctuations present in inSituall. A total of 1807 inSitudaily soil drying
rates were calculated, across all sites and drydowns. SMAP and inSituSMAP both yielded 769 because of their
lower observation frequency.

Drying rates are expected to bemost negative at the beginningof a drydownand trend toward zero. To ensure
that abnormally infrequent observations did not affect our results, we only calculated drying rates when
tn+1! tn (equation (2)) was three or fewer days. Errors in individual observations introduced considerable
noise into the calculated drying rates (Figures 1 and S2–S18). Therefore, each drying rate was binned accord-
ing to howmany days into the drydown interval its midpoint fell, rounded to the nearest whole number day.
The results and discussion below are focused on the median value from each bin.

3. Results

For the 2005 drydown days across all sites, the average ubRMSE between SMAP and in situ soil moisture is
0.033 cm3 cm!3, within SMAPmission target accuracy. This is similar to the 0.038 cm3 cm!3 ubRMSE reported
by Chan et al. [2016] using observations from the full period of record. The four sites with highest ubRMSEs in
Chan et al. [2016] (carm, sofo, kyea, and reme) all had ubRMSE> 0.04 cm3 cm!3 in this study as well. By

Figure 1. Rainfall (bottom), volumetric soil moisture (VSM; middle), and soil drying rates (top) at (a) Fort Cobb, Oklahoma and (b) Tonzi Ranch, California. Drydowns
are highlighted in green. Markers show inSituall (blue dot), inSituSMAP (black circle), and SMAP (red cross) observations. Solid curves are models whose confidence
interval around τ does not include zero (acceptable fits). Dotted curves are fitted exponential models whose confidence interval around τ includes zero (low-quality
fits). InSituSMAP fits are nearly identical to inSituall fits (Figure S1) and are not shown. τ values for acceptable model fits are displayed according to color.
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comparing timescales and drying
rates between SMAP and in situ
observations, we can uncover impor-
tant differences not captured by
ubRMSE. All results are summarized
using median values to avoid the
effects of a positive skew in τ (its
range is zero to infinite). Using mean
values does not change the findings.

3.1. Exponential Timescales of
Soil Drying

The exponential model fits both
SMAP and in situ observations of soil
moisture following rainfall events

(Figure 1): drying is rapid at first and slows with time. The median RMSEs between model fits and observa-
tions are well below 0.01 cm3 cm!3 for all observation types (Table 1). Exponential drying timescales (τ) vary
from several to more than 20 days across the 63 events. Investigation into why τ varies from event to event or
site to site is beyond the scope of this paper. Possibilities include differences in meteorological conditions,
water table depth, vegetation, and soil texture.

τ values fit to SMAP data are consistently smaller than those fit to inSituall. For example, the third drydown in
Figure 1a has SMAP and inSituall τ values of 3.4 and 6.2 days, respectively. This difference is consistent across
nearly all drydowns: of the 63 events with acceptable fits, 53 fall below the 1:1 line in Figure 2a. The median τ
value is 44% smaller when fit to SMAP (4.08 days) than when fit to inSituall (7.33 days) (Table 1). Restricting the
frequency and timing of in situ observations to that of SMAP does not decrease the exponential drying
timescale. Corresponding τ values fit to inSituall and inSituSMAP are centered on the 1:1 line in Figure 2b,
and their median values are nearly identical (Table 1).

The magnitude of soil drying, based on A (equation (1)), is 35% greater when estimated from SMAP data than
from the complete in situ record (inSituall) (Table 1 and Figure S19a). Again, restricting the frequency and
timing of in situ observations to that of SMAP does not account for this difference (Figure S19b and
Table 1): the A coefficients estimated from inSituall and inSituSMAP are nearly identical.

Table 1. Model Fits, Parameters, and Uncertaintiesa

Observations Used to Fit Model

InSituall InSituSMAP SMAP

RMSE (cm3 cm!3) 0.0042 0.0020 0.0062
τ (days) 7.33 7.30 4.08
τ uncertainty (days) 0.19 1.30 1.29
A (100 × cm3 cm!3) 11.3 11.1 15.2
A uncertainty (100 × cm3 cm!3) 0.09 2.1 3.4
θf (100 × cm3 cm!3) 9.0 9.1 9.2
θf uncertainty (100 × cm3 cm!3) 0.11 0.84 1.0

aMedian RMSEs, parameters, and uncertainties for exponential fits to
eachdata type. Thesedatacomefrom63drydownsthatprovideacceptable
model fits to all three observation types. A and θf values and uncertainties
are expressed as 100 × cm3 cm!3.

Figure 2. (a) Relationship between inSituall-fit and SMAP-fit τ values. (b) Relationship between inSituall-fit and inSituSMAP-fit τ values. Marker colors correspond to
each site as shown. Marker sizes correspond to length of drydown.
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Parameter uncertainties (Table 1) are
primarily related to the number of
observations, not how well the expo-
nential model describes the data. Fits
to inSituall have the lowest uncer-
tainty. Models fit to inSituSMAP and
SMAP have the same limited number
of observations and similarly high
parameter uncertainties due to the
challenge of fitting a multiple-
parameter model with a limited num-
ber of observations.

3.2. Discrete Drying Rates

Figure 3 shows how drying rates vary
with increasing time since cessation
of rainfall. Data for each site are
shown individually in Figures 1 and
S2–S18. As expected, the most nega-
tive rates (fastest drying) occur soon
after rain events. Although there is
considerable noise within each daily
bin, median values for each day and

measurement type reveal two important differences. First, the frequency of soil moisture observations does
not affect the calculated drying rate: observations up to 3 days apart (inSituSMAP) yield rates consistent with
those calculated from daily data (inSitudaily). Second, drying rates are faster when calculated from SMAP than
from inSitudaily. In days 1 through 6, median drying rates are 1.6, 2.7, 2.4, 2.1, 1.7, and 1.6 times greater, respec-
tively, for SMAPthan inSitudaily (mean: 2.0). There isnoapparentdifferencebetweenSMAPand inSitudaily drying
rates after day 6. Similar differences exist when SMAP and inSituSMAP are compared.

The drying rate results are consistent with the exponential model analysis. Compared to inSituall, exponential
fits to SMAP exhibit shorter median timescales and greater median magnitudes of drying (Table 1). These
differences require that SMAP observes faster drying rates over the interval during which a majority of the
soil drying occurs.

4. Discussion and Conclusions

Meeting the SMAP validation goal (ubRMSE ≤ 0.04 cm3 cm!3) at CVS does not guarantee that the dynamics of
drying events determined from SMAP are accurate, especially given the difference in observation depth
between satellite radiometer and in situ probes. Quantifying differences that exist is important for both data
assimilation applications and model verification studies that utilize SMAP soil moisture.

The exponential model used here characterizes the timescale and magnitude of 63 soil moisture drydowns
across 17 sites. The SMAP soil moisture data yield exponential drying timescales that are approximately half
(44%) those determined from watershed-averaged in situ observations. In addition, the magnitude of SMAP
drying is 35% greater than that of the in situ networks. Direct calculation of drying rates between consecutive
observations corroborates that SMAP and in situ soil moisture observations exhibit different behavior. In the
6 days following the rain events (approximately the median exponential drying timescale), surface soil moist-
ure measured by SMAP decreases twice as fast as that measured by in situ probes. Drying rates are effectively
equal at longer intervals (>6 days) after rainfall. The differences between SMAP and in situ dynamics are not
due to the timing and frequency of SMAP observations; the subset of in situ observations concurrent with
SMAP yields nearly identical results as its high-frequency counterpart.

SMAP and in situ probes measure drying behavior differently because they are sensitive to soil moisture at
different depths. L-band radiometer measurements are sensitive to soil water between the surface and a
moisture-dependent depth, usually 5 cm or less [e.g., Njoku and Kong, 1977]. The in situ probes at 15 of the

Figure 3. Drying rates calculated from inSitudaily (blue), inSituSMAP (green),
and SMAP (red) as a function of time into the drydown period. Small markers
showall data for inSitudaily andSMAP. Largemarkers show themedianof each
observation type in each daily bin. Large marker sizes correspond to the
number of data points in each bin, which is also shown at the top of the figure.
Error bars indicate ±1 standarddeviation around themean (meannot shown).
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17 CVS, however, are centered at 5 cm and thus do not measure soil moisture in the top several centimeters
[Rondinelli et al., 2015]. These differences in sensing depth lead to different characterizations of soil moisture
drying. Rain events create positive vertical moisture gradients. The near-surface soil is wetter than deeper
soil shortly after rainfall but tends to dry more quickly due to evaporation and vertical redistribution [e.g.,
Schneeberger et al., 2004]. Moreover, L-band sensing depth for very wet soil may be as little as ~1 cm
[Escorihuela et al., 2010], further accentuating the combined effects of vertical soil moisture gradients
and different sensing depths. The two Australia sites yield similar results to those from other sites, despite
having vertically inserted probes, possibly because the soil depth observed by the probes is still deeper
than SMAP penetration depth. In addition, the sensor head may shelter rain [Adams et al., 2015], making
probe observations drier than SMAP retrievals until the soil equilibrates.

Results are consistent with those from SMOS [Rondinelli et al., 2015; Champagne et al., 2016], suggesting that
shortened drydowns may be an issue for any L-band instrument. It is also possible that nonuniform rainfall
within the validationpixel could lead todifferent dryingdynamics,which shouldbeevaluated in future studies.

Hydrologic applications and studies that utilize SMAP soil moisture must consider the differences in sensing
depth, drying timescale, and drying rate discussed here. Our results can help guide efforts to optimize the
usefulness of SMAP observations. Bias corrections techniques such as cumulative distribution function
matching could potentially minimize differences in drying timescales and rates. Different functions may be
needed to relate SMAP and model soil moisture in periods of wetting and drying.
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