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ABSTRACT

The utility of hydrologic land surface models (LSMs) can be enhanced by using information from ob-

servational platforms, but mismatches between the two are common. This study assesses the degree to

which model agreement with observations is affected by two mechanisms in particular: 1) physical in-

congruities between the support volumes being characterized and 2) inadequate or inconsistent parame-

terizations of physical processes. The Noah and Noah-MP LSMs by default characterize surface soil

moisture (SSM) in the top 10 cm of the soil column. This depth is notably different from the 5-cm (or less)

sensing depth of L-band radiometers such as NASA’s Soil Moisture Active Passive (SMAP) satellite

mission. These depth inconsistencies are examined by using thinner model layers in the Noah and Noah-

MP LSMs and comparing resultant simulations to in situ and SMAP soil moisture. In addition, a forward

radiative transfer model (RTM) is used to facilitate direct comparisons of LSM-based and SMAP-based

L-band Tb retrievals. Agreement between models and observations is quantified using Kolmogorov–

Smirnov distance values, calculated from empirical cumulative distribution functions of SSM and Tb time

series. Results show that agreement of SSM and Tb with observations depends primarily on systematic

biases, and the sign of those biases depends on the particular subspace being analyzed (SSM or Tb). This

study concludes that the role of increased soil layer discretization on simulated soil moisture and Tb is

secondary to the influence of component parameterizations, the effects of which dominate systematic

differences with observations.

1. Introduction

Land surface models (LSMs) are important tools for

understanding the cycle of water and energy between

the land and the atmosphere. Because of the spa-

tially limited and discontinuous nature of land surface

observations, numerical schemes that constitute LSMs

are necessary to fill information gaps in both space and

time. The quantity of moisture contained within the soil

is central to these simulations. Soil moisture affects in-

filtration and discharge rates and controls how net ra-

diation is partitioned between sensible and latent

heating. These fluxes, in turn, affect transpiration rates,

the carbon cycle, weather and climate forecasts, and

drought and flood assessments, all of which have hu-

manitarian and environmental impacts.

One way to enhance the utility of a hydrologic LSM

is to pass it observational information through data
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assimilation (DA) using a formal framework such as the

ensemble Kalman filter (EnKF; Kumar et al. 2014a;

Reichle et al. 2002). At the simplest level, DA in-

volves updating simulated values toward those from

an observation-based platform or network. Natural or

anthropogenic processes that are present in observa-

tions but not explicitly accommodated by a model (or

passed into a model via forcing data) can be at least

partially captured through DA, resulting in improved

outcomes for regional and global models (e.g., Felfelani

et al. 2018; Rains et al. 2017; De Lannoy and Reichle

2016a,b). Datasets from remotely sensed observations

are particularly attractive for DA because of their large-

scale and distributed nature (Lahoz and De Lannoy

2014). Standard DA methods work optimally when the

errors between the LSM and observations are random

(Kumar et al. 2012b). As a result, DA frameworks re-

quire careful consideration of the nature of systematic

errors (Crow et al. 2019). In the ideal scenario, observa-

tions would provide unbiased characterizations of the

world, and models would be developed to provide unbi-

ased estimates of those observations. Model-simulated

values and corresponding observations would agree.

Working toward this goal of model ‘‘observability’’

requires internal consistency in modeling systems.

[For example, a model may provide accurate evapo-

transpiration estimates but if the soil moisture state

required to achieve this end is not realistic and does

not agree with the available soil moisture observa-

tions, then the model is inherently limited in its

applicability (Koster et al. 2009).] Poor model ob-

servability can stem from a variety of system com-

ponents, including

1) missing physical processes,

2) incommensurate scales of observation and model-

ing, and

3) inaccurate or arbitrary parameterizations of physical

processes.

This study contributes to the community’s understand-

ing of soil moisture observability by investigating issues

related to items 2 and 3. These components are intrin-

sically linked because, for example, when heterogeneity

cannot be resolved at a given model scale, it must be

parameterized.

In situ and remotely sensed soil moisture observa-

tions have different horizontal and vertical support

volumes than those of LSMs. In situ probes collect data

at the centimeter scale, while LSMs typically use

kilometer-scale grid cells. Data from high-quality soil

moisture networks can be upscaled to match the hori-

zontal scale of a model, but they still typically consist of

probes placed at 5-cm depth (Jackson et al. 2012;

Colliander et al. 2017a) and thus are sensitive to soil

moisture content between approximately 3.5 and

6.5 cm (Rondinelli et al. 2015). LSMs, on the other

hand, commonly implement a surface layer that spans

0–10-cm depth (Chen and Dudhia 2001; Niu et al.

2011). While these two volumes are highly correlated,

the nonlinear nature of soil moisture may allow for

systematic mismatches between the two quantities.

Modern remote sensing platforms that utilize L-band

radiometers such as NASA’s Soil Moisture Active

Passive (SMAP) are useful in part because they pro-

vide soil moisture at a horizontal scale (10s of kilo-

meters) similar to that of LSM simulations (Kerr et al.

2010; Entekhabi et al. 2014). Vertical support scale,

however, still differs (Fig. 1). While nominally re-

ported to be 5 cm (Kerr et al. 2010; Entekhabi et al.

2014), the actual sensing depth is often shallower and

depends on soil moisture content, soil texture, surface

roughness, and vegetation cover (Liu et al. 2013;

Njoku and Kong 1977; Escorihuela et al. 2010; Jackson

et al. 2012; Babaeian et al. 2019). The shallower sens-

ing depth is known to affect characterizations of soil

drying behavior (Shellito et al. 2016a). To address the

inconsistency between modeled and remotely sensed

soil depths, some studies have decreased LSM surface

layer thickness from 10 to 5 cm or less (Gutmann and

Small 2010; Santanello et al. 2019; Santanello and

Carlson 2001).

A second source of systematic error comes from the

nature ofmodels themselves. The scale of real-world soil

moisture heterogeneity is much smaller than that of an

individual model grid cell, and LSMs must parameterize

processes such as infiltration, evaporation, and runoff to

depend on a single soil moisture value for each cell

(Koster and Milly 1997). Though such a value may

produce reasonable simulations, it may not actually exist

in the real world. Therefore, LSM-generated soil mois-

ture quantities can more accurately be considered

model-specific indices that must simultaneously char-

acterize each grid cell’s aerially averaged soil moisture

and the effects of within-grid moisture variability on

surface fluxes (Koster et al. 2009; Van Looy et al. 2017).

Moreover, model-specific parameterizations ensure that

soil moisture from one model cannot be directly used by

another without disrupting other states and fluxes

(Koster et al. 2009). Similarly problematic is the some-

what arbitrary assignation of soil parameters that are

meant to capture real influences of soil texture and have

an outsized effect onmodeled soil moisture (Ahuja et al.

2010; Lehmann et al. 2018; Gutmann and Small 2007;

Xia et al. 2015). We must therefore expect any adjust-

ment that affects soil moisture state to also affect other

modeled states and fluxes.
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Like LSMs, high-quality soil moisture observations

from remote sensing platformsmay too includemodeled

or parameterized components in their retrieval algo-

rithms.Datasets used by observational platformsmay be

different from data used within an LSM, which provides

for another source of bias. For example, SMAP soil

moisture products require an inverse t–v model, soil

and canopy temperature states from NASA Goddard

Earth Observing System Model, MODIS-derived land

cover class and vegetation water content, and global

soil texture characterizations (Entekhabi et al. 2014).

SMAP soil moisture is therefore not a direct obser-

vation of soil moisture, but rather an estimate based

on observed microwave brightness temperature (Tb)

and radiometric theory. It contains its own parame-

terizations and biases.

Fortunately, observations and LSMs can provide

scientific insights despite systematic errors and LSM-

specific parameters (Kumar et al. 2018). Prior to DA, it

is common to rescale observations such that they match

the first and second (or higher) statistical moments of

the LSM time series. This can be done via normal-

deviate-based scaling (Crow et al. 2005) or cumulative

distribution function (CDF) matching (Reichle and

Koster 2004; Atlas et al. 1990; Anagnostou et al. 1999;

Wood 2002). Scaled observations become indicators of

anomalous conditions and are useful even if the un-

scaled observations have a persistent bias.

FIG. 1. Schematic showing SMAP L-band sensing depth, 5-cm in situ probe placement depth,

and simulation layering schemes for Noah and Noah-MP. All values are in centimeters.
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Alternatively, LSM values can be adjusted toward

observations by calibrating model parameters. But a

priori calibration of soil moisture on a continental scale

is limited by the spatial extent of observations and can

introduce errors in associated fluxes (Shellito et al.

2016b). In addition, as discussed above, remotely sensed

products can contain modeled information, so calibrat-

ing to such observations would not necessarily result in

an unbiased LSM time series.

Scaling observations or calibrating LSMs can in-

troduce significant statistical errors if the underlying

climatologies are not steady. Unmodeled seasonal ir-

rigation activities may reshape the CDF of the observed

soil moisture during part of the year. Without a priori

knowledge of watering schedules, the value of obser-

vations diminishes (Kumar et al. 2015). It is for this

reason that efforts have been made to develop irrigation

models that mimic real-world practices (Ozdogan et al.

2010; Lawston et al. 2017a). SMAP is one way to capture

irrigation signals, which paves the way for incorporating

it into LSMs via DA (Lawston et al. 2017b).

In this study, we delve further into the two causes of

poor observability enumerated above: incommensurate

scales, and arbitrary parameterizations. To this end, we

employ the Noah and Noah-MP LSMs (Chen and

Dudhia 2001; Niu et al. 2011) with finer vertical dis-

cretization than they contain by default, so that the

layering schemes provide surface soil moisture (SSM)

quantities that are commensurate with the depth of

L-band observations.

In both models, evaporation is designed to pull water

from the top soil layer, which results in strong coupling

between SSM and evaporation. However, in Noah-MP

(but not Noah), the thickness of the surface layer is a

parameter in its evaporation formulation (Sakaguchi

and Zeng 2009). This means that a change to surface

layer thickness will affect Noah-MP SSM content via

two mechanisms—a different volume of soil being

characterized and a different parameterized rate at

which moisture evaporates from that volume. In Noah,

SSM is expected to be affected only by the different

volume being characterized.

We compare LSM simulations to in situ soil moisture

observations from USDA experimental watersheds and

to remotely sensed soil moisture retrievals from SMAP.

We also quantify how layering schemes affect simulated

microwave Tb, a quantity that depends largely on soil

moisture and soil temperature. By analyzing Tb values,

we are able to compare LSM modeled data to direct

SMAP measurements, bypassing the need for the soil

moisture retrieval algorithm and the potentially biased

ancillary data therein. Through this work, we address

the following scientific questions:

1) To what extent and by what mechanism does using a

thinner LSM surface layer change soil moisture and

Tb simulations?

2) How often does such a change improve the agree-

ment between LSM and observation-based soil mois-

ture and Tb?

3) Where present, do improvements result from a

decreased bias, an improved distribution shape,

or both?

An improved understanding of the sources of systematic

errors between models and observations works toward

the broader goal of moving the two into closer agree-

ment and decreasing the community’s dependence on

rescaling techniques. Such a shift will allow for more

effective leveraging of state-of-the-art observational

datasets such as SMAP.

2. Models and observations

This study employs NASA’s Land Information System

(LIS; http://lis.gsfc.nasa.gov/; Kumar et al. 2006; Peters-

Lidard et al. 2007) software to conduct the modeling

components of the investigation. LIS allows flexible

coupling of a suite of land surface models to obser-

vationally driven forcing and parameter datasets for

benchmarking and data assimilation studies. It com-

prises three stand-alone components: the Land Surface

Data Toolkit (Arsenault et al. 2018a) sets up the static

parameters used by the models; LIS (Kumar et al. 2006;

Peters-Lidard et al. 2007) coordinates the forcing data

and executes the models; and the Land Surface

Verification Toolkit (Kumar et al. 2012a), generates

statistics from the model output and observational da-

tasets. The LIS modeling framework is publicly avail-

able on GitHub (https://github.com/NASA-LIS/LISF).

In section 2a, we describe the LSM setups and forcing

data. Section 2b describes the radiative transfer model

that has been coupled to the LSMs. Remotely sensed

and in situ data are described in sections 2c and 2d,

respectively.

a. Land surface models

The Noah LSM version 3.3 (Chen and Dudhia 2001;

Ek et al. 2003) and its next-generation counterpart,

Noah-MP version 3.6 (Niu et al. 2011; Yang et al. 2011),

provide estimates of soil moisture, temperature, and

turbulent fluxes using four distinct soil layers. We run

both models using identical domains, resolutions, land

surface parameter datasets, and forcing data. Soil texture

designations are taken from the State Soil Geographic

Database (STATSGO) from the U.S. Department of

Agriculture—Natural Resources Conservation Service

(Miller andWhite 1998). Dominant vegetation types are
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taken from the University of Maryland’s land cover

classifications (Hansen et al. 2000). The models are

forced with meteorological data from NLDAS-2 pri-

mary forcing fields, which are available at 1/88 over the
CONUS (Xia et al. 2012). Simulations span the 3-yr

period of 1 April 2015–1 April 2018, following a 10-yr

spinup. Model resolutions are set to match the 1/88
forcing data, and their domains cover the continental

United States (CONUS). Noah-MP is capable of a va-

riety of implementation options. We use the setup de-

scribed in EXP5 of Yang et al. (2011), which takes

advantage of all Noah-MP augmentations except the

dynamic vegetation scheme (Table 1).

While many aspects of Noah and Noah-MP are simi-

lar, their treatment of evaporation is notably different.

As shown below, evaporation in Noah depends only on

vegetation cover, atmospheric demand for moisture,

and SSM supply. In Noah-MP, it is also dependent upon

the model’s surface layer thickness, a quantity that will

be manipulated over the course of this study’s experi-

ments. Therefore, to properly understand the impact of

our experiments on SSM, we must first inspect the two

evaporation mechanisms.

Evaporation in the two models is meant to capture

‘‘the real process whereby as bare soil dries, the top few

millimeters of the soil become significantly drier than

the several centimeters below and thus act as a capping

evaporative ‘‘crust’’ barrier at the upper boundary of the

topmost soil layer’’ (Ek et al. 2003). In Noah, this is

accomplished with a single empirical parameter, de-

noted fx, which is set to 2. The evaporation term Edir is

formulated as (Ek et al. 2003)

E
dir

5 (12s
f
)3FXfx 3E

p
, (1)

where sf is fractional vegetation cover (prohibiting

evaporation beneath the canopy), FX is relative degree

of saturation, and Ep is potential evaporation rate. The

squared term results in evaporation rates that drop off

quadratically as the top layer’s moisture content de-

creases, approximating the expected effect of a dry crust

barrier.

In Noah-MP, evaporation is allowed both over bare

soil and beneath the canopy. It depends on the vapor

pressure gradient between the air above the ground

and the air in the soil where the water vaporizes.

Additionally, it depends on aerodynamic resistance and

soil resistance (Sakaguchi and Zeng 2009). The soil re-

sistance parameter in Noah-MP rsoil more explicitly ac-

commodates for the formation of a dry crust barrier by

approximating molecular diffusion through the dry part

of the soil:

r
soil

5
L

D
(2)

where L is the dry layer thickness and D is the vapor

diffusivity within the soil (Sakaguchi and Zeng 2009).

The dry layer thickness depends directly on the overall

thickness of the model’s surface layer d1:

L5 d
1

exp 12
u
1

u
sat

� �w� �
2 1

e2 1
. (3)

This means that in contrast to Noah, a change to surface

layer thickness in Noah-MP will have a direct impact on

evaporation rates. The other parameters in Eq. (3) are

u1, the soil moisture content of the top model layer; usat,

the saturated soil moisture content of the soil; w, a

concavity parameter that has been empirically deter-

mined to be 5; and e, which is the constant 2.718

(Sakaguchi and Zeng 2009).

b. Radiative transfer model

To simulate the raw measurements made by micro-

wave remote sensing instruments, a radiative transfer

model (RTM) is coupled with the LSMs used here, similar

to the approach in Kumar et al. (2014b). Specifically,

TABLE 1. Noah-MP options used in this study. For complete list of available parameterization options, see Arsenault et al. (2018b).

For further details regarding each process, see Niu et al. (2011).

Physical process Parameterization option

Leaf dynamics Use prescribed LAI and shade fraction

Canopy stomatal resistance Ball–Berry (Ball et al. 1987)

Soil moisture factor for stomatal resistance Noah type (Chen et al. 1996)

Runoff and groundwater option SIMGM (Niu et al. 2007)

Surface layer drag coefficient option Monin–Obukhov (Brutsaert 1982)

Supercooled liquid water Standard freezing point depression (Niu and Yang 2006)

Frozen soil permeability Use total soil moisture to compute hydraulic properties (Niu and Yang 2006)

Radiation transfer option Modified two-stream with 3D canopy structure (Niu and Yang 2004)

Snow surface albedo CLASS (Verseghy 1991)

Rainfall and snowfall partitioning Based on Jordan (1991)
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we couple Noah and Noah-MP to the Community

Microwave Emission Modeling platform, version 3.0

(CMEM3) (Holmes et al. 2008; Drusch et al. 2009)

within the LIS framework. CMEM3 provides estimates

of vertically and horizontally polarized microwave Tb

using a zero-order t–v RTM. It includes contributions

from the surface layer of the soil (or snow if present),

vegetation, and atmosphere. Because atmospheric ef-

fects are removed from SMAP Tb as part of L1 pro-

cessing (De Lannoy et al. 2015), the LIS implementation

of CMEM3 excludes atmospheric emission and ab-

sorption. A detailed description of the RTM is provided

in the supplemental material.

c. SMAP retrievals and products

SMAP has a sun-synchronous orbit with overpasses at

0600 and 1800 LT. We used morning and evening Tb

(both polarizations) and the baseline SSM (SCA-V)

from SMAP’s level 3 enhanced product [L3SMP_E;

Chan et al. (2018), version 2, available through the

National Snow and Ice Data Center (NSIDC)]. This

product takes advantage of overlapping radiometer

footprints to provide retrievals at 33-km resolution

posted to a 9-km EASE-Grid 2.0 (Chan et al. 2018). We

regridded SMAP products onto the same 1/88NLDAS-2

grid of the Noah and Noah-MP simulations via nearest

neighbor. We removed data that have been flagged due

to dense vegetation, mountainous terrain, frozen or

snow-covered ground, heavy precipitation, and static

water bodies.

The radiometer on board SMAP observes Earth’s

L-band (1.41GHz) microwave Tb every 1–3 days

(Entekhabi et al. 2010). The algorithm used to extract

soil moisture from SMAP Tb requires solving the

t–vmodel for soil emissivity (Ulaby et al. 1981; Jackson

and Schmugge 1991), then solving the Fresnel equations

for soil dielectric (Entekhabi et al. 2014), and finally

using a dielectric mixing model (Mironov et al. 2009) to

estimate 0–5-cm soil moisture (O’Neill et al. 2018).

These submodels require various ancillary data. The

t–v model utilizes effective surface temperature from

Global Modeling and Assimilation Office (GMAO)

forecasts (Entekhabi et al. 2014). Its eponymous pa-

rameters t (vegetation optical depth) and v (single

scattering albedo) depend on vegetation water content

(VWC), vegetation structure, and microwave frequency

and polarization (Entekhabi et al. 2014). Parameter t is

estimated to be linearly proportional to VWC via a land

cover look up table, and v is set to 0.05 globally (O’Neill

et al. 2018). VWC itself is estimated from a satellite-

based normalized difference vegetation index (Entekhabi

et al. 2014). Soil roughness is accounted for using the root

mean squared surface height (Choudhury et al. 1979;

Wang 1983), which is also estimated from a land cover

type lookup table (O’Neill et al. 2018). Due to its better

performance at validation sites, the current baseline

soil moisture algorithm utilizes vertically polarized

microwave radiation (Chan et al. 2016).

To properly address observability, we also compared

simulated Tb (from the LSMs plus RTM described

above) to SMAP Tb observations. To ensure consis-

tency of Tb values, we use SMAP Tb that has been

water-body corrected using ancillary data (part of L1

processing to mitigate against erroneously cool obser-

vations caused by the presence of open water within the

radiometer footprint) (O’Neill et al. 2018). In addition,

both SMAP and the model provide horizontally and

vertically polarized Tb values. To capture information

from both data streams while maintaining simplicity in

our analyses, we averaged the two polarizations together

into a single time series. This framework accommo-

dates for the potential of future soil moisture algo-

rithms to incorporate both polarizations (e.g., Chaubell

et al. 2020).

d. In situ observations

We focus our study on seven U.S. Department of

Agriculture Agricultural Research Service (USDA-

ARS) watersheds in the CONUS (Fig. 2). These lo-

cations all contain a distributed network of Stevens

Water Hydra Probes placed horizontally at 5-cm

depth. Individual in situ measurements have been

upscaled to 36 km using Voronoi diagrams such that

the weighted average soil moisture is commensurate

with the scale of SMAP retrievals. These sites are all

members of the calibration and validation program

for SMAP, meeting a minimum threshold for accuracy

and representativeness (Colliander et al. 2017a).

Analyses compare upscaled in situ observations

against the SMAP and LSM pixels that most closely

align with each location. Watersheds span a variety of

soil types, land covers, and climatic regimes. Further

details and descriptions of each site can be found in

FIG. 2. Locations of the seven densely instrumented SMAP cali-

bration/validation sites used in this study.
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Colliander et al. (2017a), and datasets are available

from Colliander et al. (2017b).

3. Methods

a. Model configurations

We conducted three numerical experiments with both

Noah and Noah-MP. Each has a different number of soil

layers as illustrated in Fig. 1. SIM1 uses the default Noah

LSM configuration. SIM2 includes one additional layer,

obtained by evenly splitting the top layer. The 5-cm

surface layer of SIM2 thus provides an exact match with

the nominal sensing depth of an L-band radiometer

(Kerr et al. 2010; Entekhabi et al. 2014). SIM3 uses a

finer discretization based on the exponential spacing

described in the Community Land Model (Brunke et al.

2016). Our implementation places seven layers in the

first 100 cm and keeps the bottom layer thickness at

100 cm. The SIM3 setup provides a surface layer

thickness of 2.1 cm, which may be a more accurate

characterization of L-band radiometer sensing depth

(Escorihuela et al. 2010; Liu et al. 2013).

As shown in section 2a, adjustments to surface layer

thickness directly affect evaporation rates in Noah-MP.

While we do not intend to introduce a new version of

that model, we briefly present Noah-MP simulations

wherein d1 in Eq. (3) was hard-coded to 10 cm. The three

experiments shown in Fig. 1 were repeated, providing

a set of simulations wherein evaporation and surface

layer thickness were linked only through the layering

schemes’ impact on SSM. Note that because SIM1 has a

surface layer thickness of 10 cm already, hard coding d1
in this way did not affect that simulation.

In Noah and Noah-MP, vegetation rooting depths are

defined as the number of model layers (starting from the

top) in which roots exist. To obtain consistent rooting

depths across all experiments, we increased the number

of layers in which roots are found for SIM2 and SIM3.

Our modifications maintained the full 200-cm rooting

depth for tree-covered land and 100-cm rooting depths

for croplands, shrublands, and grasslands. A slight

compromise had to be made when defining rooting

depths in the ‘‘bare soil’’ and ‘‘urban’’ classes: SIM1 and

SIM2 define these roots (when present) to reach 10 cm,

but the closest layer interface available in SIM3 is at

10.9 cm. Because of the inherent lack of vegetation in

these classes, we do not expect this slight modification to

significantly affect our results.

b. Quantifying agreement

This study used soil moisture and Tb values to show

and quantify the agreement between models and ob-

servations. We directly compared pairs of empirical

CDFs (eCDFs) from the LSMs, SMAP, and in situ

probes. To ensure that each dataset covered the same

temporal and spatial domain, time periods and locations

that did not include a valid SMAP retrieval were

omitted.

We quantified eCDF agreement using the two-sample

Kolmogorov–Smirnov (KS) test (Chakravarti et al.

1967). The KS statistic is defined as the largest distance

between two eCDFs and ranges from zero (exact match)

to one (distributions have no overlap). Previous hydro-

logic studies have used the KS test in a similar way to

provide insight into first, second, and higher-order sta-

tistical moments through a single value (Kumar et al.

2015; Jaeger and Seneviratne 2011; Zhang et al. 2018). A

second metric we employed in this study was the overall

mean difference between observed and modeled time

series. Through this measure, we gained first-order

insight into the effect each experiment had on the

magnitude of simulated values. Last, we determined

unbiased KS values by implementing the KS test on

pairs of eCDF that had had their mean values removed.

This metric provided information about how closely

the shapes of two eCDFs curves agreed with one an-

other, independent of any bias that may have existed.

Unbiased KS values are affected by standard deviations

and higher-order statistical moments.

In most analyses, the data we used to generate eCDFs

are SMAP soil moisture, in situ soil moisture, and SSM

from the models. As shown in Fig. 1, the depth intervals

characterized by each data source are not identical.

L-band radiometers are sensitive to soil moisture be-

tween the surface and a (variable) depth of 2–5 cm, so

when comparing SMAP retrievals to models, we utilized

only the top layer of each model. In these analyses, the

match between SMAP and the relatively thick layer 1 in

SIM1 is more approximate than that between SMAP

and the thinner layer 1 of SIM2 or SIM3. The sensing

depth of in situ moisture probes is also inexactly char-

acterized by the LSM configurations. The logical match

for 5-cm probe placements is a 0–10-cm model interval,

which is symmetrical around the few centimeters of soil

to which the probe is sensitive. Therefore, for consis-

tency, we also compared in situ probes to 0–10-cm soil

moisture quantities in SIM2 and SIM3. For SIM2, this

required averaging layers 1 and 2. For SIM3, we used a

weighted average of layers 1–3, which provided 0–10.9-cm

soil moisture. In this way, we explicitly quantify the role of

model vertical resolution.

As described in section 2c, a true assessment of LSM

observability must be conducted in Tb observation

space in addition to soil moisture space (where ancillary

data are tied to the SMAP product). Our analyses utilize

Tb from SMAP and from the coupled LSM1RTM
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models (section 2b). These Tb analyses remove the

burden of RTM parameterizations from SMAP and

place it instead on the models.

Most of our analyses focused on the seven USDA-

ARS watersheds described in section 2d. These sites

have high-quality in situ soil moisture data against which

we can assess LSM SSM. We also analyzed SMAP and

LSM data from SIM1 and SIM3 at 1/88 over the CONUS

to gain insight into how these two layering configura-

tions affect distributed SSM and Tb. In all cases, we

calculated KS values, mean differences, and unbiased

KS values between simulations and observations.

4. Results

Surface layer thicknesses vary across SIM1, SIM2, and

SIM3. Accordingly, different depths contribute to the

moisture and Tb values shown in these results, with the

exception of section 4d, where we analyze soil mois-

ture from the same 0–10-cm depth across all three

experiments.

a. Noah SSM time series

Figure 3 shows a portion of the SSM time series from

Noah, Noah-MP, SMAP, and in situ observations at two

of the USDA-ARS watersheds. These two locations

demonstrate the spread and inconsistency of soil mois-

ture from each source. Little Washita, Oklahoma (OK),

shows excellent agreement between simulations, in situ

observations, and SMAP retrievals, while Little River,

Georgia (GA), shows moisture levels to be consistently

different between each source. Differences in mean

values are also found to varying degrees in the other five

watersheds (Fig. S1, Table S1 in the online supplemental

material), highlighting the need for bias correction ap-

proaches if observational data were to be assimilated

into this LSM.

Shortening the surface layer in Noah has a negligible

effect on SSM at most times and locations. Thinner

surface layers allow for slightly more thorough wetting

by precipitation events, as the same volume of rain is

distributed throughout a thinner soil volume. This effect

can be seen at most soil moisture peaks, such as at Little

Washita, OK, in early June 2017. The excess moisture,

however, is short lived. It drains, diffuses, or evaporates

out of the surface layer quickly enough that within a day,

the moisture levels of SIM2 and SIM3 are again indis-

tinguishable from those of SIM1.

b. Noah-MP SSM time series

Figure 4 shows SSM simulated by Noah-MP at the

same two watersheds. The baseline simulation (SIM1) is

similar to that of Noah (Fig. 3), with minor discrepancies

due to inherent differences in the physics of the two

models. These two sites (and all sites except Walnut

Gulch; Fig. S2) show SSM from Noah-MP SIM1 to be

wetter than SSM from Noah SIM1.

The three Noah-MP experiments exhibit noticeably

larger differences between them than Noah simulations

do. By overlaying soil evaporation volumes onto Fig. 4

(dotted lines), we show that SIM3 contains evaporation

biases up to;25% above SIM1. (Transpiration volumes

remain virtually identical across the three experiments

and are smaller in magnitude than evaporation—not

FIG. 3. Surface layer soil moisture at Little Washita, OK, and Little River, GA. Noah SIM1,

SIM2, and SIM3 are shown in black, pink, and blue, respectively. SMAP soil moisture retrievals

are marked with orange circles. Basin-averaged 5-cm in situ probe data aremarked with purple

pentagons.
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shown.) Because evaporation (described in section 2a)

pulls moisture only from the surface soil layer, we expect

inflated evaporation volumes to result in commensurate

decreases in simulated SSM values.We test the extent of

this linkage by repeating the three experiments after

hard-coding d1 in the Noah-MP evaporation scheme to

10 cm (further described in section 3a).

Figure 5 shows Noah-MP results at the same two

watersheds after implementing the one-line change to

Noah-MP. (Other site time series are shown in Fig. S3.)

In contrast to Fig. 4, the modified Noah-MP results of

Fig. 5 exhibit similar soil evaporation volumes and SSM

across the three experiments. Remaining differences in

SSM only exist at the moisture peaks (such as early June

at Little Washita, OK) and during extended dry downs

(such as November at Little River, GA). Together,

Figs. 4 and 5 confirm that the direct dependence of

Noah-MP’s bare soil evaporation scheme on surface

layer thickness is the dominant mechanism behind the

differing Noah-MP SSM time series shown in Fig. 4.

However, for consistency, the remainder of this study

is conducted using the unmodified Noah-MP surface

evaporation scheme.

c. SSM cumulative distribution functions

The time series of SSM provided in sections 4a and 4b

can bemore quantitatively described using eCDFs, from

which we derive KS distance values and mean differ-

ences. In Fig. 6, we show eCDFs of simulations and

observations using all three years of data. As before, the

FIG. 4. As in Fig. 3, but for Noah-MP simulations. Accumulated soil evaporation for each

simulation is shown with the same color using dotted lines and the right axis.

FIG. 5. As in Fig. 4, but for Noah-MP with surface resistance hard-coded to use a 10-cm sur-

face layer.
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Noah simulations show little sensitivity to changes in

surface layer thickness. Noah-MP exhibits noticeably

drier SSM when the thinner configurations are used,

especially on the dry end of the distribution. Table S1

contains KS values and relative mean differences de-

rived from these eCDFs and indicates which of the three

layering configurations provides the best match between

modeled SSM and SMAP or in situ observations.

In Noah simulations, the KS values of the three ex-

periments’ SSM compared to SMAPSSMand in situ soil

moisture are quite similar, confirming the qualitative

assessment made in section 4a. When nontrivial differ-

ences do exist, SIM3 eCDFs demonstrate a slightly

better match against observations than those from SIM1

and SIM2. The only exception is at Walnut Gulch,

Arizona (AZ), where SIM2 and SIM3 are both slightly

worse than SIM1when compared to in situ soil moisture.

Mean differences between LSMs and both SMAP SSM

and in situ soil moisture are positive (LSM is wetter) at

all sites except Little River, GA, where the LSM is drier

than the SMAP retrievals. The mean values are trivially

affected by changing layer thicknesses.

In Noah-MP simulations, the KS values (Table S1)

show a larger diversity of values, reflecting the dif-

ferent dry down and eCDF shapes shown in Figs. 4 and

6. In all cases but one (Little River, GA), SIM3

(thinnest surface layer; Fig. 1) provides the lowest KS

values with respect to both SMAP and in situ soil

moisture. Notably, each site that shows SIM3 KS

values to improve over those from SIM1 also exhibits a

wetter mean SIM1 SSM value than the remotely sensed

or in situ observations do. The thinner soil layers of

SIM2 and SIM3 reliably decrease that difference and

improve the associated KS values. These results allow us

to attribute a significant part of the KS test results to

differences in mean values between simulations and

observations. While the dependence of KS values on

mean values is not surprising, it motivates the need to

investigate unbiased eCDFs and associated unbiased

KS values, which we do in section 4g.

It is also clear from Fig. 6 and Table S1 that there are

often nontrivial differences between in situ soil moisture

and SMAP SSM. The largest discrepancy is found at St.

Josephs, Indiana (IN), where the KS distance is 0.54.

[Due to insufficient spatial scale and associated upscaling

studies, this watershed is the only one of the seven that

has not met the stringent requirements to be designated a

‘‘core’’ cal/val site at the 36-km scale (Colliander et al.

2017a).] Poor agreement of SMAP retrievals with in situ

soil moisture guarantees that LSM simulations will be

unable to simultaneously match both datasets.

As described in the introduction, the mismatch be-

tween SMAP and individual in situ data is in part ex-

pected. Problems stem (at least) from the facts that

SMAP retrievals include global model parameteriza-

tions and characterize a shallower soil depth than the

in situ probes do. In the following section, we address the

component of in situ–model mismatch that may come

from the incongruity of soil depths between probes and

models. In section 4f, we address the component of

SMAP–model mismatch that may come from the in-

clusion of modeled data in SMAP retrievals.

d. 0–10-cm cumulative distribution functions

In Fig. 7, we show eCDFs of simulated 0–10-cm soil

moisture against the 5-cm in situ observations. The KS

values and mean differences derived from these eCDFs

are provided in Table S1. Noah simulations again show

only slight differences among the three experiments

and show no changes to overall means. At St. Josephs,

IN; South Fork, Iowa (IA); and Walnut Gulch, AZ,

SIM1 0–10-cm soil moisture provides amarginally better

FIG. 6. eCDFs of SSM fromNoah and Noah-MP simulations, SMAP, and in situ probes. KS test values between simulations and SMAP

retrievals are shown according to simulation color. Thick lines indicate instances where theKS value of one simulation is at least 1%better

than the other two. Mean differences and other KS test values are provided in Table S1.
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match with in situ observations than the other two

simulations do. Agreement among Noah-MP simula-

tions of 0–10–cm soil moisture varies more widely, but

not as widely as when only the top layer was considered

(section 4c). Amajority of the sites are best served using

0–10-cm soil moisture from SIM3, and as before, SIM3

almost always provides soil moisture with the smallest

mean difference from the in situ observations. Only at

Walnut Gulch, AZ, does the 0–10-cm soil moisture from

SIM1 provide a lower KS value than does 0–10-cm soil

moisture from SIM2 or SIM3. It is also the only site

where the 0–10-cm soil moisture from SIM3 does not

provide the smallest mean difference. These results are

likely due to the dry climate that facilitates decoupling

between the surface soil moisture and layers below it.

Overall, the results from this section show that

implementing finer layer discretization’s in Noah

makes a negligible difference in the eCDF of its 0–10-cm

soil moisture. In Noah-MP, the fit between simulated

0–10-cm soil moisture and in situ probes does change

between SIM1, SIM2, and SIM3, but to a lesser degree

than when only SSM was considered (in the previous

section). The fact that at most locations, all three sim-

ulations from both models still provide far from perfect

agreement with in situ soil moisture indicates that the

issue of soil moisture support volume is only a small

factor affecting agreement with observations. Instead,

changes to mean soil moisture values are again driving

the improvements. Evidence to this effect comes from

Noah-MP simulations, where at all sites there is a better

match (lower KS value) between in situ soil moisture

and the surface layers of SIM2 and SIM3 than between

in situ soil moisture and the 0–10-cm average from SIM2

and SIM3. (Those two quantities are identical in SIM1.)

That result is puzzling considering that neither the 0–2-

cm interval nor the 0–5-cm interval spans the actual

placement depth of the in situ probes (5 cm). But it is

explained by the fact that the default model at all sites

is wetter on average than the in situ observations

(Table S1). Those differences are mitigated by omitting

the relatively wetter soil layer 2 (in the case of SIM2) or

soil layers 2 and 3 (in the case of SIM3). Better agree-

ment between mean values results in lower KS values

and overshadows the effect of the physical incongruity

between model simulation depth and in situ probe

placement depth.

The dominant role of mean values and relatively small

role of support volume suggests that model parameters

and parameterizations are more important for observ-

ability than the physical agreement between modeled

and observed depths. In the next section, we assess the

veracity of such a statement by comparing SMAP Tb

retrievals and simulated Tb values.

e. Noah and Noah-MP Tb time series

We compare simulated Tb values to SMAP Tb at the

same seven locations used in the soil moisture analysis.

The overall wetting and drying patterns observed in

Fig. 8 (using Noah) and Fig. 9 (using Noah-MP) are in-

versions of the SSM time series shown earlier. Wet soil

corresponds to low Tb because there is a negative rela-

tionship between soil moisture and emissivity (Jackson

and Schmugge 1989; Jackson et al. 1982). As in Figs. 3

and 4, the differences between SIM1, SIM2, and SIM3

are more distinct in the Noah-MP simulations than in

the Noah simulations.

Although the wetting and drying trends shown in

Tb space are straightforward, the mean differences be-

tween Tb values are notably different from those in soil

moisture space. Whereas mean LSM soil moisture

values from Little Washita, OK, are negligibly different

from SMAP SSM retrievals, the coupled LSM-RTM

simulations result in distinctly warmer mean modeled

Tb values than SMAPTb values.Mean Tb differences at

FIG. 7. eCDFs of 0–10-cm soil moisture from simulations and in situ probes. KS test values between simulations and in situ observations

are shown according to simulation color. Thick lines indicate instances where the KS test value of one simulation is at least 1% better than

the other two. Mean differences are provided in Table S1.
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other sites (notably Walnut Gulch, AZ; Fig. S4) also

differ in magnitude from mean SSM differences. Part of

the difference could be an artifact of the SMAP retrieval

algorithm, which utilizes only the vertically polarized

microwave signal. H-polarized signals are often cooler,

which could lead to a wet-biased soil moisture reading.

We investigate these inconsistencies further in the next

two sections.

f. Tb cumulative distribution functions

As before, we can quantitatively assess model per-

formance using eCDFs that show simulated and ob-

served Tb from all three years of our analysis (Fig. 10).

Noah shows negligible sensitivity of Tb to layering

schemes. Noah-MP shows Tb to depend on layering

scheme, but with differences that are somewhat muted

compared to those observed in soil moisture space

(Fig. 6). This tempering is expected, since surface soil

moisture is only part of what CMEM3 uses to calculate

Tb. Vegetation water content, soil roughness, and soil

texture will remain the same between each experiment,

forcing some degree of similarity between the three

experiments. Overall, Fig. 10 and Table S1 show that

Noah-MP simulations with a thinner surface layer

(SIM3) result in warmer Tbs than do simulations with

the default surface layer thickness (SIM1). This result is

internally consistent with SIM3 producing drier soil than

SIM1 does (Figs. 4 and 6).

At all sites, when nontrivial differences exist between

simulated and observed Tb eCDFs, the best agree-

ment with SMAP Tb is provided by SIM1, the default

simulation. (See the bolded black lines of Fig. 10 and

FIG. 8. Tb at LittleWashita, OK, and Little River, GA. Noah SIM1, SIM2, and SIM3 coupled

to CMEM3 are shown in black, pink, and blue, respectively. SMAP Tb retrievals are marked

with orange circles. Daily precipitation is shown with blue bars.

FIG. 9. As in Fig. 8, but using Noah-MP simulations coupled to CMEM3.
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associated KS values.) This result is in direct contrast to

the results shown in section 4c, where SIM3 performs

best, and indicates an inconsistency between SMAP’s

retrieval algorithm and the CMEM3 RTM. Because

both use the t–vmodel, the contrasting results must be a

consequence of different parameters or submodels. For

one, soil reflectivity is determined to depend on soil

roughness differently by CMEM3 and SMAP. The for-

mer uses the model of Wegmüller and Mätzler (1999)
(see supplemental material), whereas the latter utilizes

that of Choudhury et al. (1979) (Entekhabi et al. 2014).

The Tb results allow us to qualify the soil moisture

results presented in section 4c: SSM from SIM3 was

largely shown to provide better agreement with SMAP

soil moisture than SIM1, but at least part of that result is

due to the initial mean difference between the default

simulation and observations. Initial mean Tb differences

often do not follow the expected sign inversion from

SSM, changing the overall result of implementing thin-

ner surface layers. In soil moisture space, all sites except

Little River, GA, show SIM1 as being wetter than

SMAP does. But in Tb space, they all show SIM1 as

being warmer than SMAP does. By introducing thinner

surface layers in SIM2 and SIM3, the SSM difference is

reduced, but the Tb difference is exacerbated.

In the following section, we consider the shapes of the

eCDF curves themselves and establish the degree to

which a thinner model surface layer affects wetting and

drying independent of the mean moisture level.

g. Unbiased cumulative distribution functions

Figure 11 contains eCDFs of SMAP, in situ, and

simulated soil moisture after the long-term mean value

from each time series was removed. The unbiased KS

values associated with Fig. 11 are contained in Table S1

and characterize how well the shapes of the eCDFs

agree with one another. In this way, we remove con-

siderations of how model layering schemes affect mean

values and instead assess their impact on soil moisture

dynamics alone.

The Noah results show only small differences in dy-

namics between the three experiments. In most cases,

there is less than a 1% change in unbiased KS value

between SIM1, SIM2, and SIM3, no matter if it is

FIG. 10. eCDFs of microwave Tb from coupled LSM-RTM simulations and SMAP. KS test values are shown according to simulation

color. Thick lines indicate instances where the KS value of one simulation is at least 1% better than the other two. Mean differences are

shown in Table S1.

FIG. 11. As in Fig. 6, but with unbiased volumetric soil moisture values.
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calculated against SMAP SSM or against in situ soil

moisture observations.

Noah-MP simulations are more distinct from one

another. The unbiased soil moisture eCDFs tend to be

flatter with the SIM3 configuration than with the SIM1

configuration. This is apparent at the two Oklahoma

sites, among others. The flattening of the curves indi-

cates that the system spends a greater proportion of time

with soil moisture values that are further from the mean.

This can be accomplished by a widening of soil moisture

dynamic range or by a greater sensitivity to wet and dry

periods, both of which are consistent with a thinner

surface layer that can more thoroughly wet up with

rainfall and dry down afterward.

When compared against observations, the perfor-

mance of Noah-MP simulations is inconsistent. The best

agreement with SMAP soil moisture (bolded lines in

Fig. 11) is provided by SIM1 at two sites, SIM2 at two

sites, and SIM3 at three sites. The best agreement with

in situ soil moisture (Table S1) is provided by SIM1,

SIM2, and SIM3 at two, four, and one site, respectively.

Though none of the layering schemes is unequivocally

better than the other two, the unbiased KS values

themselves reveal an important finding. All of the un-

biased time series from Noah simulations match SMAP

soil moisture better than do all of the unbiased time

series from Noah-MP simulations. When compared

against in situ data, the same general trend holds, though

there are a few exceptions. In other words, Noah pro-

vides more realistic moisture dynamics than Noah-MP

does, regardless of which of the three layering structures

is used. These models share much of their lineage and

are forced by the same data. They differ in how various

processes are parameterized. Therefore, these results

again indicate that the role of model layering schemes

on the observability of moisture dynamics is secondary

to that of model parameterizations.

h. Distributed SSM intercomparison

In this section, we implemented SIM1 and SIM3 in

Noah and Noah-MP over the CONUS and calculated

the KS values, mean differences, and unbiased KS

values with respect to SMAP soil moisture retrievals and

SMAP Tb at each NLDAS pixel. Figure 12 shows the

overall improvement or degradation to KS values that

results from using the thinner layering configuration of

SIM3 instead of the default layering configuration of

SIM1. For both SSM and Tb, the Noah-MP results show

more intense blues and reds, indicating as before that

changes to layering schemes affect Noah-MP simula-

tions much more than they do those from Noah. The

preponderance of blue in Figs. 12a and 12c indicates that

using a thinner surface layer improves agreement be-

tween modeled SSM and SMAP SSM in more locations

than it degrades it. However, the fact that Fig. 12b and

especially Fig. 12d contain more red than blue indicates

FIG. 12. Improvement (blue) or degradation (red) of observability when SIM3 is used in place of SIM1, asmeasured by the change in KS

value (a),(c) between LSM and SMAP SSM and (b),(d) between LSM-RTM and SMAP Tb. Noah results are shown in (a) and (b) and

Noah-MP results are shown in (c) and (d). Locations of the seven study sites are indicated with green circles.
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that agreement of Tb between SIM3 and SMAP is worse

than that between SIM1 and SMAP. These conflicting

results were also found in the site-specific analyses

(section 4f).

In Fig. 13, we categorized each pixel according to

whether its mean value and/or its unbiased KS value

compared to SSM and Tb observations were improved

or degraded when switching from SIM1 to SIM3. In this

way, we quantified on a continental scale the relative

effect of each component on SIM3 performance.

Both models exhibit a reduction in mean SSM dif-

ference from SMAP over amajority of the country when

SIM3 is used instead of SIM1 (blue and green pixels in

Figs. 13a and 13c). Such pixels cover wide swaths of the

West and Midwest, especially for Noah-MP. The same

cannot be said about mean Tb differences: blue and

green areas in Figs. 13b and 13d constitute a minority of

the CONUS pixels and are predominantly limited to

arid regions of the country. Such regionally dependent

results may reflect differences in L-band sensing depth,

which is shallower when more vegetation is present, and

deeper over bare soil (Babaeian et al. 2019).

Improvements to unbiased SSM KS values, which

indicates agreement of eCDF shape between models

and observations, are found in humid and semiarid re-

gions of the CONUS (blue and purple pixels).

Improvements to unbiased Tb KS values are found

throughout the CONUS especially as simulated by Noah-

MP. In one respect, this result is encouraging because it

indicates that Tb dynamics of SMAP are more accurately

produced with a model that contains a 2-cm surface layer.

However, when we consider overall KS value, the im-

provements to unbiased KS values are vastly over-

shadowed by the influence on mean model values.

In simulations of both SSM and Tb, pixels where

overall KS values worsen (as shown in red in Fig. 12 and

with stippling in Fig. 13) largely coincide with increased

mean differences (blue and purple pixels). Stated an-

other way, when SIM3 improves upon SIM1, the

changes in KS values are largely driven by improve-

ments in agreement between mean values, not by im-

provements to the eCDF shapes. This is most obvious in

Fig. 13d, where in most of the Midwest, using SIM3 in

place of SIM1 degrades the agreement between means

and improves the unbiased KS value. The stippling in-

dicates that overall KS value has worsened.

5. Discussion and conclusions

This study investigated the potential to improve LSM

surface soil moisture observability by increasing layer

discretization in Noah and Noah-MP. We carried out

simulations at seven densely instrumented watersheds

with model surface layer thicknesses set to 10 cm

FIG. 13. Components of observability [mean difference (bias) and unbiased KS value (shape)] that were improved or degraded when

SIM3 was used in place of SIM1. Metrics are calculated (a),(c) against SMAP SSM and (b),(d) against SMAP Tb. Noah results are shown

in (a) and (b) and Noah-MP results are shown in (c) and (d). Stippling indicates pixels where the KS value of SIM3 was worse than that of

SIM1. Locations of the seven study sites are indicated with white circles.
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(default, SIM1), 5 cm (SIM2), and 2 cm (SIM3). We as-

sessed each experiment’s effect on soil moisture by

calculating KS values, mean differences, and unbiased

KS values between LSM simulations and in situ probes

and between LSM simulations and SMAP retrievals. In

addition, we assessed modeled Tb by coupling the LSMs

to an RTM and comparing its output to SMAP Tb

observations.

Shortening the models’ surface layer thickness allows

for more rapid wetting-up of the soil during rainfall and

more rapid and thorough drying-out of the soil during

dry down periods. In Noah-MP, there is also a decrease

in mean SSM levels. These findings are consistent with

the intuition behind thinner soil layers acting as a

smaller reservoir for the system’s inputs of precipitation

and outputs of evapotranspiration and drainage. They

are also consistent with prior studies that show soil

drying to occur more rapidly in near-surface layers than

in those that are deeper, such as the 0–10-cm interval

typically characterized in LSMs (Santanello and Carlson

2001; Rondinelli et al. 2015; Kurc and Small 2004).

Changing the model soil layering makes a more sig-

nificant difference in Noah-MP simulations than in

Noah simulations. This can be attributed to the fact that

the experiments affect Noah soil moisture only via

changes to its support volume. SSM in Noah-MP is ad-

ditionally affected by the parameterization of surface

evaporation, which is enhanced as the surface layer is

thinned.

In the Noah-MP experiments, a majority of the seven

locations analyzed in this study exhibit better KS values

between SIM3 SSM and SMAP SSM than between

SIM1 and SMAP. SIM2 results in KS values that are

intermediate between the two others. Similar results

were found when comparing simulated SSM against

in situ soil moisture probes, despite their placement at

5 cm, which is deeper than SMAP’s sensing depth and

deeper than the surface layers of SIM2 and SIM3. The

physical incongruity of the in situ results reveals the

importance of model parameterizations on the mean

values of resultant SSM: KS values can improve merely

from decreases in mean moisture levels, in addition to

(or even in spite of) changes to higher-order dynamics.

The same experiments implemented in Noah also

slightly favor SIM3 over SIM1, both when compared

against SMAP retrievals and against in situ soil moisture

probes. However, the changes in KS values are often

negligible, which shows that more physically realistic

layering schemes alone do not drive significant im-

provements to modeled SSM. Instead, it is the param-

eterized dependence of surface evaporation on model

surface layer thickness in Noah-MP that drives changes

to its mean SSM levels and KS values.

The above results are based on analyses of soil mois-

ture. That is, comparisons were made between LSM

simulated soil moisture and either in situ soil moisture

observations or SMAP SSM retrievals. However, be-

cause SMAP soil moisture products require algorithms

that use ancillary model data, they are not stand-alone

(direct) observations themselves and cannot rightly be

used to quantify the observability of LSM soil moisture.

To perform a more direct comparison against SMAP

measurements, we repeated our analyses in Tb space:

coupling the two LSMs to the CMEM3 RTM allowed

changes to simulated SSM to propagate to Tb values. As

expected, Tb time series are inverted and slightly muted

when compared to SSM.

Tb results are quite opposite those found in soil

moisture space. Differences in KS values, where pres-

ent, favor the 10-cm surface thickness of SIM1 instead of

the 2- or 5-cm thickness of SIM2 or SIM3. The con-

flicting results again indicate the importance of model

parameterizations and bias structure in quantifying ob-

servability. The SMAP retrieval algorithm and the

CMEM3 RTM are not exact inverses of one another.

They utilize different parameters, submodels, and soil

temperatures to convert Tb to SSM and vice versa. The

differences are significant enough to affect the sign of

the default model’s mean value compared to SMAP

observations and change whether or not the finer layer

discretization of SIM3 provides an improvement over

SIM1. Adjustments to model vertical resolution must

therefore be implemented with caution: their effect on

model bias signatures may not be immediately apparent,

but they control the first-order results.

By removing biases a priori and calculating unbiased

KS values, we explicitly addressed the effect of changing

model layer thicknesses on second- and higher-order

statistical moments of soil moisture. In Noah, these ef-

fects are negligible at the seven study sites. In Noah-MP,

the experiment containing the best unbiased agreement

with in situ or SMAP soil moisture is inconsistent and

varies by site.

The dominant role that bias has on KS values is fur-

ther confirmed in the distributed results. Regions of the

country whose KS values improve when switching from

SIM1 to SIM3 neatly correspond with regions where the

mean difference between the LSM and SMAP values

also improves, especially in Noah-MP. There are only a

limited number of pixels wherein KS values degrade but

mean difference improves and vice versa. This CONUS-

wide analysis confirms that KS value improvements are

almost exclusively driven by shifts in the mean, not by

changes to the eCDF shape.

By showing that model biases and observability are

driven more by parameters and parameterizations than
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by vertical support volume, we emphasize that the role of

thinner model layering schemesmust be considered within

the larger context of limitations in soil physics and pa-

rameters. The fact that 0–2-cm layers correspondwith 5-cm

in situ probes better than 0–10-cm layers do (section 4d) is a

clear indication that soil layer modifications are at times

compensating for other inadequate model parameters. For

example, soil hydraulic properties are specified based on

lookup tables that do not necessarily reflect the scale of

LSM or SMAP pixels (Hogue et al. 2006; Reynolds et al.

2000). These properties determine the ceiling and floor

(porosity and wilting point) that confines the modeled or

retrieved soil moisture. Any mismatch or unrealistic soil

type information can therefore introducemodel biases like

those seen at some of the sites presented above (Xia et al.

2015; Gutmann and Small 2005).

The findings of this paper should be taken more as an

indication of the importance of reconciling biases and

ancillary data across satellite, LSMs, and in situ datasets

than as an endorsement to utilize thinner model dis-

cretizations in Noah and Noah-MP. If the reader wishes

to use layering schemes similar to those shown here, he

or she must understand that model layer thicknesses

may (as in Noah-MP) or may not (as in Noah) also be

included as parameters in flux calculations that will af-

fect the system more than the changes otherwise would

alone. Future work should focus on improved calibra-

tion of LSMs using observations (in situ and/or satellite)

so that bias issues in LSMs can be teased out separately

from those in RTMs. Further examination of the role of

soil layers in the model should be made in conjunction

with revised parameters to investigate if positive im-

provements from calibration and layering adjustments

can be made simultaneously.
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